CHEMICAL COMPOSITION OF MEAT (M. ADDUCTOR) AND FATTY ACIDS IN INTRAMUSCULAR FAT OF GOAT KIDS AND RAM LAMBS

R. NIEDZIÓŁKA, K. PIENIAK-LENDZION

Faculty of Agriculture, University of Podlasie, Siedlce; Wydział rolniczy, Akademia Podlaska, Siedlce, Poland

ABSTRACT

In the experiment, goat kids of White Improved breed and ram lambs of the Polish Lowland breed fattened up to 150 days were studied. Results of the study show that lambs were significantly heavier (36.64 kg) and had a higher weight of warm carcass (16.67 kg). Muscles of goat kids were characterized by 3.55 p.u. (percentage units) of palmitic acid (C_{16:0}) and 4.33 p.u. of stearic acid (C_{18:0}). This difference is statistically significant. Among the mono-unsaturated acids predominated was oleic acid (C_{18:1}) – 54.1 % in goat kid tissue and 47.5 % in ram lambs tissue. In the experiment, favorable proportion of UFA/SFA characterized the goat kids meat (1.69 in comparison with 1.22 in ram lambs). Differences in individual fatty acids contents between studied animals were statistically significant.

Key words: goat kids, ram lambs, fatty acids

INTRODUCTION

In recent times, markets of food products have been adapting to different requirements of contemporary consumer, insisting on lean and easily digestible meat of high quality and good taste. High interest in the animal fat composition is observed, as it has many functions in the diet. Excessive consumption of this kind of products can increase the cholesterol level in blood, leading to closing of blood vessels and infarct (Borys and Boris, 2001; PN 73/A-82110; Santos-Silava et al., 2002). According to Arsenos et al. (2000), the chemical composition and characteristics of fatty acids in the muscular tissue of ruminants depends, among other factors, on the quality, age, location of fatty tissue and the type of feed the animals are fed with.

The main objective of this study was to determine the differences in fatty acids composition in intramuscular fat of goat kid and ram lambs fed with the same feed and kept in the same conditions.

MATERIAL AND METHODS

Male kids of the White Improved breed and ram lambs of the Lowland Polish breed were used as the experimental material. The study was carried out in two turns. After weaning, the animals at the age of about 70 days were fattened with all-mash pelleted feed CJ (produced by Cargill in Poland). The additive containing 6.1 MJ of metabolizable energy and 182 g crude protein per kg, was fattened without any limitation. Meadow hay of average quality was used as additional roughage. The fattening lasted until the age of 150 days.

Slaughtering and evaluation of carcass value were carried out according to methods approved by the Animal Science Institute in Balice, Cracow (Nawara et al., 1963). After 24-hours of cooling at 4°C, the carcasses were divided into halves. The right halves of the carcasses were dissected into meat, bones and crude fat.

The basic chemical analyses (dry mater, crude protein, fat and ash) were carried out with standard

Correspondence: E-mail: owce@ap.siedlce.pl
methods (PN 73/A-82110; PN 73/A-82111; PN 75/A-
04018) in m. adductor.

The fatty acid profile in intramuscular fat extracted
from adductor muscle (m. adductor) was determined by
Soxhlet method (Folch et al., 1957; Ulbert and Reicht,
1992). The determination of fatty acids profile was
performed by gas chromatography Chrom-5 device fitted
with the fire-ionizing detector, a glass column, a Silar-
SCP spiral with a 10-percentual level with inner diameter
4 mm and length 2.5 meters, nitrogen as the transferring
gas at float rate 30 ml.min⁻¹, column temperature was
maintained at 200˚C and batcher and detector at 250˚C.

The results were statistically analyzed by the
two-factor analysis of variance followed by Tukey test,
and by the SPSS PC (Microsoft Corp., 1985) computer
program.

RESULTS AND DISCUSSION

Results of the study showed that lamb kids were
significantly heavier (36.64 kg) and had a higher weight
of warm carcass (16.67 kg) and higher weight of total
fats (8.16 kg) just before slaughter. There were no clear
differences in slaughter value and meat content in the goat
kid fatness with significantly reduced fat tissue (16.61
and 17.79 %, respectively) (fig. 1). The meat of milk-type
lambs was characterized by a significantly lower content
of half-carcass fat tissue (12.7 %) as against 15.3 % in
heavy lambs (Borys and Borys, 2001).

The kid meat from the second year experiment
showed significantly higher content of protein (20.21 %)
and mineral compounds (1.13 %) and lower fat content
(2.28 %) (fig. 2).

The effect of animal species and the year of study
on body weight before slaughter, right-half carcass weight
and fatty acid content in half carcasses were found. The
similar results were shown by Sanz-Sampelayo et al.
(1993) and Arsenos et al. (2000). Statistically significant
differences for chemical composition of muscle tissue
with regard to the animal species and the year of study
were proved. Protein and mineral proportions were
larger, whereas fat proportion was smaller in the muscle
tissue of kids. Similar results were proved by Babiker et
al. (1990), Pieniak-Lendzion et al. (2000).

Investigation resulted in findings that
intramuscular fat of goat kids was characterized by a
generally better profile of fatty acids than that of ram
lambs (tab. 1). The comparative analysis of results shows
3.55 percentage units (p.u.) lesser content of palmitic
and 4.33 p.u. of stearic acid. The difference was statistically
significant. Borys & Borys (2001) affirmed the lower level
of palmitic acid (22.31 %) and stearic acid (12.93 %)
in lambs fattened to body mass 35–40 kg.

Among fatty acids, which play a special role in
human organism, statistically significant differences were
found in oleic acid content, in kid and ram meat reaching
54.1 % and 47.5 %, respectively. The mentioned content
of fatty acids influenced the total monounsaturated acids.
Furthermore, significant differences in the content of polyunsaturated fatty acids such as linoleic, linolenic and arachidoleic acid were noticed. The studied muscles of goat kids contained more fatty acids than the analogous tissue of ram lambs. The animal species significantly influenced the proportions of majority of the fatty acids.

The intramuscular fat of goat kids was characterized by a significantly lower proportion of saturated fatty acids by 7.91 p.u. and a higher content of unsaturated ones by 7.91 p.u., and among them, monounsaturated acids by 7.14 p.u. in comparison to ram lambs. Statistical differences in content of polyunsaturated fatty acids were not found. Gruszecki et al (1999) detected higher level of saturated acids too, about 2.09 % and lower level of unsaturated acids, about 2.1 % from ram lambs in comparison to intense bitterness in kept goat kids.

The comparison of fatty acids in analyzed muscles, depending on the kind of animal during the two years period showed statistically significant differences between years of investigations. However, no differences in proportions of: margaroleic, stearic, oleic, and linoleic acids were ascertained.

Statistically significant interactions (species x years of experiment) in the content of fatty acids studied were caused by a salrier proportion of acids in the intramuscular fat of both goat kids and ram lambs. It was demonstrated that habitat factor, the experimental years and animal species had significant effects on contents of linolenic, eicosenoic and arachidoleic acids. In case of myristic, palmitoleic and margaroleic acids differences between particular animals was not always significant. Borys & Borys (2001) affirmed statistical differences in level of fatty acids comparing milk-type and heavy lambs.

Proportion of unsaturated to saturated acids is a significant indicator of fat quality. In human diet the proportion should be equal to 2 (Gruszecki et al., 1999; Nestel, 1987; Pieniak-Lendzion et al., 2000). Compared to heavy lambs, the muscular tissue of milk-type lambs was characterized by a generally more beneficial fatty acid profile, mainly due to more favourable UFA/SFA ratios, 1.42 and 1.41, respectively (Borys, 2001). In the experiment, advantageous proportion of UFA/SFA was characteristic of goat kids (1.69) in comparison to ram lambs (1.22). The differences between animal species were statistically significant.

Table 1: Profile of fatty acids in intramuscular fat of goat kid and ram lambs (%)

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>goat kids (n = 16)</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>myristic</td>
<td>1.80</td>
</tr>
<tr>
<td>myristoleic</td>
<td>0.22</td>
</tr>
<tr>
<td>palmitic</td>
<td>22.05</td>
</tr>
<tr>
<td>palmitoleic</td>
<td>2.50</td>
</tr>
<tr>
<td>margaric</td>
<td>0.88</td>
</tr>
<tr>
<td>margaroleic</td>
<td>0.83</td>
</tr>
<tr>
<td>stearic</td>
<td>12.48</td>
</tr>
<tr>
<td>oleic</td>
<td>54.10</td>
</tr>
<tr>
<td>linoleic</td>
<td>3.46</td>
</tr>
<tr>
<td>linolenic</td>
<td>0.41</td>
</tr>
<tr>
<td>eicosenoic</td>
<td>0.26</td>
</tr>
<tr>
<td>arachidoleic</td>
<td>1.02</td>
</tr>
<tr>
<td>SFA</td>
<td>37.21</td>
</tr>
<tr>
<td>UFA</td>
<td>62.80</td>
</tr>
<tr>
<td>UFA/SFA</td>
<td>1.69</td>
</tr>
<tr>
<td>MUFA</td>
<td>57.91</td>
</tr>
<tr>
<td>PUFA</td>
<td>4.89</td>
</tr>
</tbody>
</table>

n – number of animals in a group; x – arithmetic mean; SD – standard deviation; SFA – saturated fatty acids (f.a.); UFA – unsaturated f.a.; MUFA – mono-unsaturated f.a.; PUFA – poly-unsaturated f.a.; S – difference between groups significant at the level α = 0.05 or α = 0.01
The results of the study showed that goat meat has better quality than lamb. It was also confirmed by earlier data obtained by Banskalieva et al. (2000), Gruszecki et al. (1999), Pieniak-Lendzion et al. (2000) and Velasco et al. (2004). The results obtained lead us to suggest that compared to goat kids, light ram lambs are characterized by generally better slaughter value and meat quality resulting from the lower fatness of half-carcass and meat and higher content of functional components.

CONCLUSION

1. Goat kid meat showed significantly higher content of protein (20.21 %) and mineral compounds (1.13 %) and lower fat content (2.28 %).
2. Significant differences in fatty acid composition in intramuscular fat, depending on animal species, were shown.
3. The most beneficial, from dietary point of view, composition of fatty acids (i.e. the highest content of unsaturated ones and the lowest content of saturated acids) was characteristic of the intramuscular fat of goat kids.
4. The analyzed intramuscular fat of goat kids was characterized by a more beneficial proportion of monounsaturated and polyunsaturated acids than the ram lambs.
5. The results obtained lead us to suggest that compared to goat kids, light ram lambs are generally characterized by better slaughter value and meat quality resulting from the lower fatness of half-carcass and meat and higher content of functional components.

REFERENCES

Microsoft Corp. 1985. Introduction about this manual running SPSS/PC the SPSS/PC tutorial.

Authors’ address: Prof. Dr.hab. Krystyna Pieniak-Lendzion, Dr.Ing. Roman Niedziółka, Department of sheep and goat breeding, Faculty of Agriculture, University of Podlasie, 08-110 Siedlce, ul. Bolesławska Prusa 14, Poland.