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ABSTRACT

Individual mammalian organisms, used as a biomedical model, represent partial benefits and drawbacks for transfer of 
knowledge into human medicine. Whereas some models, such as rhesus monkey, are more similar to human, its usage 
is difficult and controversial. In contrast, well-designed combination of several mammalian models shows effective 
way how to verify a hypothesis and, based on conservativeness of observed phenomenon, implicate it into the human 
medicine. The aim of this overview is to compare individual mammalian biomodels, with respect to reproductive 
biology, elucidation of reproductive toxicology and, in particular, to an effect of endocrine disruptors. The literature 
search is supplemented with own experimental designs and observations obtained using mouse and porcine models. 
Our findings point out advantages of in vivo exposure of oocyte, sperm or embryos of outbred mice to endocrine 
disruptors followed by verification using porcine in vitro treatment of cumulus-oocyte complexes with identical 
endocrine disrupting compound. In summary, the association between in vivo and in vitro exposure suggests about 
highly-relevant and available model for testing of endocrine disruptors and risk assessment for human reproductive 
health.
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INTRODUCTION

Plastic compounds (bisphenols) (Žalmanová   
et al., 2016), pesticides (DDT, vinclozoline, pyrethroids)  
(Petr et al., 2013; AL-Hussaini et al., 2018), flame 
retardants (organophosphates) (Carignan et al., 
2018) and others are continuously introduced into 
the environment during industrial production and 
plastic usage. These compounds are considered  
to be environmental pollutants and, in many 
cases, represent dangerous agents with endocrine  
disrupting effect (Gingrich et al., 2018). Endocrine  
disruptors, firstly defined by Colborn et al., (1993) 
are generally described as being: i) permanent  
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exposure to humankind due to their ubiquitousness, 
ii) very low exposure doses that do not achieve 
toxic effects in a dose-dependent manner, iii) non-
monotonic curve of endocrine disruptor effect, 
often results in more deleterious effects of lower 
doses than higher ones (Daston et al., 2003; 
Vandenberg et al., 2012) and iv) temporal window 
of sensitivity to effects of endocrine disruptors is 
often observed during specific stages of ontogenetic 
development, when targets for ED are temporarily 
present in an organism. 

Without doubt, human health is under 
intensive spatiotemporal pressure of sub-toxic 
doses of several endocrine disruptors. These agents  
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are carried to human organism through various  
paths of exposure, such as dermal contact, inhalation 
and, so often, via consumption of contaminated 
beverages and/or foodstuffs. Although endocrine  
disruptors are circulating in the bloodstream 
immediately after the exposure, it remains 
unexceptionally without clinical manifestations. 
These circumstances should be taken into account 
for the appropriate selection of an adequate 
biomodel for testing individual endocrine 
disruptors, particularly with concern to which 
signal pathways are expectedly disrupted. 

In contrast to apparent harmlessness, human 
and animal reproductive health is significantly 
affected through three different mechanisms for 
endocrine disruptor action: the first, genetic or 
genotoxic effect (Smith-Oliver and Butterworth, 
1987; Tiwari et al., 2012), is mostly unapplied 
because of sub-toxic doses. Others, non-genetic 
(Viñas and Watson, 2013) and epigenetic (Skinner, 
2014) molecular action frequently occur. There are 
major manifestations of these modes of action: 
hormone imbalance with many physiological 
consequences and inadequate epigenome changes, 
respectively. In addition to systemic organism-wide 
response to hormone imbalance (i. e. non-genetic 
effect), transgenerational inheritance of epigenetic 
endocrine disruptor-driven effect personates the risk  
for further generations (Nilsson et al., 2012; Rodgers 
et al., 2015). 

Poor health from endocrine disruption-
induced hazards, abundant in human and animal 
health, is obvious. Accordingly, the risk assessment 
is inevitable. Biomonitoring data have been 
systematically collected through many countries, 
however, models serve experimental simulation 
of endocrine disruptor exposure followed by 
comprehensive analyses. In general: there are 
several different models, such as in vivo, in vitro 
and in silico. Although the in silico model means 
detailed computational simulation with many 
advantages, in vivo and in vitro models are based 
on real live elements (i.e. the animal and the cell, 
respectively). Both biomodels have individual 
benefits and drawbacks and, therefore, the selection  
of the model represents an essential step in the risk 
assessment of individual endocrine disruptors. 

Biomodels
Many well established simple invertebrate 

models, such as nematodes (roundworm 
Caenorhabditis elegans), insects (fruit fly Drosophila  
melanogaster) and echinoderms (sea urchins), 
have been historically used for a description of 
biological processes (Kuo et al., 2000; Wang et al.,  
2004; Al Rawi et al., 2011), and more recently 
for pollutant assessment (Bošnjak et al., 2014; 
Quesada-Calderón et al., 2017; Zhou, 2018). Due to 
the sensitivity, more often water living organisms  
(i. e. snails, molluscs), invertebrate species represent  
easy available models for pollutant screening for 
vertebrates (deFur, 2004). Similarly, non-mammalian  
vertebrate species (zebrafish Danio rerio, african 
clawed frog Xenopus laevis) are frequently used in 
toxicological and similar studies (Iwamuro et al.,  
2003; Barros et al., 2018). There are several 
specific possibilities, such as neurohormonal study  
(molluscs) (Shomrat et al., 2010), juvenile or 
pheromone investigation (insects) (Bomtorin et al.,  
2014), availability of gametes (Xenopus spp.) 
(Gelaude et al., 2015), that favour the utilization of 
these lower-class animal species as a bioindicator 
of environmental pollution (Bouchard et al., 
2009; Marquis et al., 2009; Blahova et al., 2018). 
The presence of the endocrine system and the 
conservativeness of some hormonal signalling 
offer the possibility to test endocrine disrupting 
effect (Keay et al., 2006). However, the complex 
signal pathways in mammals possibly affected by 
endocrine disruptors remains largely unknown and 
the studying  molecular action of such compounds 
requires mammalian biomodels. Presumable 
targeted pathways in these mammalian models 
are considered to be more similar to human than  
non-mammalian species.

Rodent models for in vivo exposure
Laboratory rats and mice have many 

advantages and are commonly used for in vivo 
testing the effects of endocrine disruptors.  
The possibility of in vivo treatment of primordial germ 
cells, oocytes, spermatozoa and/or embryos allows 
the major benefit for evaluating endocrine disruptor 
effects on such reproductive functions. There are 
several ways of administrating compounds of interest,  
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with respect to considered path of endocrine disruptor 
exposure. Oral administration through drinking 
water, feed, dosage in corn oil, or more invasive 
subcutaneous and intraperitoneal administration 
of tested compound dissolved in a vehicle (saline, 
corn oil, etc.) are available and commonly used. 
Although injections can provide exact dosage of 
the compound [expressed as ng (µg, mg) g (kg)  
bw-1.day-1], the invasiveness makes these approaches  
more laborious and stressful for the animal facility 
and animals, respectively. Moreover, oral intake 
of endocrine disruptors via water or feed more 
precisely simulate the real exposure of human 
population, where systemic organism response,  
as well as pharmacokinetics of tested compound, 
are expected. 

Rat and mouse model are desirable for a few  
different experimental schemes, combining each 
other. Individually, the acute (days) or chronic 
(weeks) exposure can be used as simple assessment 
of tested compounds on reproductive functions. 

More sophisticated approaches are available, such 
as in utero exposure or breastfeeding exposure, 
treating the pregnant and nursing dam, respectively. 

In utero exposure length differs with respect to 
subsequent physiological features: embryo transport 
through fallopian tube occurring at embryonic  
day E0.5 – E3.5, blastocyst hatching at E3.5-4.5, 
embryo implantation and placental development 
at E6.5 – 9.5 (Slevin et al., 2006), primordial germ  
cell (PGC) migration and epigenetic reprogramming  
at E7.5 – 14.5 (Doyle et al., 2013), including progressive  
mitosis of PGCs, followed by organogenesis 
until delivery (Chen et al., 2013). The epigenetic  
reprogramming window can cause transgenerational  
inheritance of endocrine disruptor-affected epigenome  
(Figure 1) and the exposure between E7 – E14 allows 
the study of this effect separately (Rahman et al., 
2017). On the contrast, whole-gestation exposure 
mimics the real endocrine disruptor impact. However, 
the beginning of exposure at E7.5, when the strict 
placental exposure of the foetus is considered, seems 

Figure 1. Presumed transgenerational effect of endocrine disruptors

(A) Environmental influence of the endocrine disruptor is capable of modifying the epigenome of foetuses (F1 generation) in utero of 
 directly exposed dams (P generation). When the disruptor affects primordial germ cells (PGcs), the 3rd generation of offspring (F2) is affected. 
 Although the rewriting of genetic information (mutation) does not occur, the impact of environment to parental (P) generation is inherited.  
(B) Thorough molecular analyses of PGCs, gametes, and embryos (RNA analysis, proteomics and histology), as well as non-invasively  
 achieved data of clinical reproduction (litter size, sex ratio, weight) are required. Oestrogenic or androgenic effects of endocrine  
 disruptors are trackable through selected features (anogenital distance and puberty onset via vaginal opening). 
(C) The further transmission of environmental factor-modulated epigenome to F3 and other generations through the epigenetic memory 
 is assumed.
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to be more proper and the treatment is equivalent  
to the transplacental exposure. 

In addition to in utero exposure, the dosage 
of milking dams offers the exposure through 
breastfeeding. This approach serves as a unique 
model for bisphenol evaluation, for reasons as 
follows: i) general sign of breastfeeding is exclusive 
milk intake by pups, ii) liposolubility in high-fatty 
diet, iii) extreme sensitivity of juvenile organisms to 
endocrine disruption, iv) breastfeeding as susceptible  
exposure window for gametogenesis at early 
stage of development (Sunyer et al., 2006), and 
v) model the potential risk for babies exposed 
to polycarbonate milk bottles and plastic toys 
(Quitmeyer and Roberts, 2007; Andaluri et al., 2018). 

Both in utero and lactation exposure does 
not allow the exact dosage for treatment of the F1  
generation through pregnant or milking dams. 
There are two possibilities for indirect estimation of 
genuine exposure by the compound, with different 
drawbacks of routine usage ─ firstly, analytical 
methods for tracking of endocrine disruptor level 
in blood plasma (Argmann and Auwerx, 2006) or 
breast milk (DePeters and Hovey, 2009; Muranishi 
et al., 2016). In the second way, the ability to 
calculate the exposure using a physiologically based 
pharmacokinetic (PBPK) model (Karrer et al., 2018), 
or even improved pregnancy PBPK model (Sharma 
et al., 2018). Although this modelling requires 
comprehensive biomonitoring data, cohort studies  
and a highly sophisticated mathematical approach,  
PBPK modelling seems to be potent for experimental 
designing and, in particular, for implications of 
experimental data in human or veterinary medicine.

The choice of appropriate genetic 
background is the general advantage of the rat  
and mouse as a biomodel. With respect to the major 
features of an experiment, i. e. risk assessment  

of tested compound for human population (Chemek 
et al., 2016) or the molecular action and endocrine 
disruptor-affected signalling pathways (Dolinoy  
et al., 2007), outbred and inbred strains are 
available for use (Table 1). Additionally, genetically 
modified inbred strains can be used for precise 
study of molecular mechanism of endocrine 
disrupting effects (Liu et al., 2015). 

Besides the advantages of the aforementioned  
in vivo exposure, several weaknesses are obvious: 
inter-species differences in organs (uterus, 
placenta), tissues (placental barriers) and cells 
(molecular regulation of oocyte maturation). These 
reasons support the usage of advanced biomodels 
like pigs (Sus scrofa) and cattle (Bos taurus), 
in particular for the explanation of molecular 
mechanism and conservativeness of the mode of 
action of endocrine disruptors. 

Mammalian in vitro models for elucidation
Abovementioned disadvantages of lower 

mammalian species establishes higher mammals 
as more appropriate for in vivo study. Historically, 
laboratory cats and dogs were sporadically used, 
however, they have not become widely utilized. 
Rhesus monkey (Maccaca mulatta) or other non-
hominin primates are most appropriate, mainly 
for the similarity of macaque genome to human. 
Nevertheless, unavailability, expensiveness or 
ethic problems arise resulting in rare utilization, 
mostly for basic study (Sutovsky et al., 1999;  
He et al., 2014; Song et al., 2016), cancer research 
(Lertpiriyapong et al., 2014; Dray et al., 2018) and 
regenerative medicine (Higginbotham et al., 2015; 
Kim et al., 2018) due to the similarity of macaque 
genome to human. Alternatively, farm animals are 
exploited for similar studies, however, the in vivo 
treatment-based experiments are poor applicable 

Table 1. Overview of frequently used strains of mouse and rat

  Mouse Rat

  C57BL/6 F334
 Inbred strains BALB/c LEW
  C3H SHR

  ICR (CD1) Sprague Dawley
 Outbred strains NMRI (HsdWin:NMRI) Wistar Han
  MF1 (HsdoLA:MF1) Lister Hooded
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alike. Therefore, the utilization of farm animals 
destined for breeding (males) or meat industry 
(females) is widespread. Porcine and bovine models 
are the most available and allow in vitro culture of 
gametes.

In vitro maturation (IVM) of animal  
oocytes represents a relevant tool for endocrine 
disruptor testing as the highly-similar cell to 
human. Oftentimes, no interpolation is necessary 
for knowledge transfer to veterinary sciences 
being an identically used biomodel. Moreover,  
the presence of surrounding cumulus cells, creating   
cumulus-oocyte complex, provide the measurement 
of cumulus expansion (Zámostná et al., 2016), other 
biological phenomenon accompanying oocyte 
maturation (Procházka et al., 1998) and a biomarker  
of oocyte quality (Nevoral et al., 2015; Blaha et al.,  
2017). Generally, in vitro culture does not simulate  
the systemic response of the organism to endocrine  
disruption. On the other hand, oocyte IVM 
combined with biomonitoring obtains the relevant  
model for human oocyte exposure in vivo 
(unpublished). Specifically, quantified concentration 
of tracked endocrine disruptors in human follicular 
fluid is easily usable for in vitro treatment via  
the supplementation of culture media at equal 
concentration (Žalmanová et al., 2017a). This IVM 
model simulates the oocyte enclosed in the ovarian 
follicle and surrounded with a matrix containing 
defined amounts of the endocrine disruptor.

In vitro fertilization (IVF), the technique familiar  
for human reproductive medicine (Balaban et al., 
2014) and biotechnology for farm animals (Pavlok 
et al., 1989; Abeydeera et al., 1998) follows both 
in vivo and in vitro maturation of oocytes. These 
oocytes acquire developmental competence during 
meiotic maturation and, therefore, the maturation 
presupposes the success of the embryonic development  
(Kim et al., 2008; Nevoral et al., 2014). Accordingly, 
the exposure of in vitro mature oocytes offers relevant 
observations of the endocrine disruptor impact on 
embryonic development through the oocyte quality 
(unpublished). A possible effect of endocrine  
disruptors on embryos in the fallopian tube and 
uterus is eliminated in this experimental scheme. 
Thus, observed phenotypes of oocytes exposed to 
endocrine disruptors after IVF directly represent 
the effect of an endocrine disruptor on the oocyte 
developmental competence acquired during IVM.

In vitro maturation and early embryonic 
development show several inter-species differences.  
There is physiologically prolonged nuclear envelope  
breakdown in prophase-arrested porcine oocyte  
when the maturation is physiologically initiated 
(Fulka et al., 1986; Motlik et al., 1998). 
Therefore, this phase provides an endocrine  
disruptor-sensitive window specific for porcine 
oocytes. Strongly affected chromatin changes 
induced by the endocrine disruptor in vitro, such 
as epigenetic modifications (Wang et al., 2016) 
and/or aneuploidy incidence (Žalmanová et al., 
2017a), can be considered in porcine oocytes. 
This model extends the possibility of molecular 
study of candidate compounds during oocyte 
maturation. Chromatin is highly error-prone 
during oocyte maturation (Hornak et al., 2011) 
and, therefore, molecular analyses after endocrine 
disruptor exposure are highly relevant. Aneuploidy 
disorders (Down syndrome, Patau syndrome), 
genetic disorders (haemophilia, cystic fibrosis) 
and epigenetic imprinting failures (Prader-Willi 
syndrome, Angelman syndrome) are clinical 
manifestations of oocyte aneuploidy-derived 
consequences and present serious issues for 
human health. Endocrine disruptors are capable 
to increase the incidence of oocyte aneuploidy  
(Hunt et al., 2003; Žalmanová et al., 2017b; Nevoral 
et al., 2018) and, thus, the risk of aneuploidy-derived  
diseases.

Evaluation of early embryonic development 
represents another way to assess endocrine 
disruptor impact on the oocyte and embryo quality.  
The genetic analysis provides the comprehensive 
approach, including advanced methods of 
epigenome analysis. For in vitro embryo production,  
the porcine model seems to be less appropriate 
due to high incidence of polyspermic fertilization 
and polyploidy of embryos. Comparing to other 
farm animal models, the bovine model provides 
highly reliable methods for IVF and in vitro 
embryo production, based on protocols often 
used intensively for commercial purpose. Overall, 
the mouse embryo offers the unique model of 
embryonic development beyond the gastrula  
stage (Sozen et al., 2018), incompatible with embryos  
of other species. Taken together, the combination of 
individual in vitro models meets the requirement for 
a suitable model.
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CONCLUSIONS

Many animal models for biological study have 
been well established through the decades, followed 
by biomedical applications and bioindicators. 
The interplay of models offers the observation of 
exposure-dependent phenotype, followed by the study  
of the molecular action of tested endocrine disruptor.  
There is the potent scheme for risk assessment 
of an endocrine disruptor for human health, 
combining a few approaches in the following order: 
i) simultaneous biomonitoring on human body 
fluids, followed by simultaneous ii) PBPK usage 
for in vivo exposure of the rodent model and iii)  
the in vitro exposure of oocytes and embryos of farm  
animals. This approach provides studying the effect 
and molecular mechanisms of endocrine disruptors 
acting at environmentally exposed doses, based 
on human biomonitoring. Additionally, the elucidation  
of attained observations and the test of 
conservativeness are available using individual 
in vivo and in vitro models. The results obtained 
from the model interplay, represent highly relevant 
outputs of the endocrine disruptor testing towards 
the elimination of environmental pollutants and 
the human health protection.
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